Table XII. Comparison of the Barker and Mixon et al. Pressure Fits

	max %	dev in P ^a	rms for % dev ^b		
temp, K	Barker	Mixon	Barker	Mixon	
Etł	1yl Acetate	(1) + 1-Chlo	orobutane (2	2)	
298.15	0.055	0.055	0.033	0.033	
348.16	0.018	0.018	0.010	0.011	
398.18	0.022	0.019	0.008	0.009	
1-	Chlorobuta	ne $(1) + Acc$	etonitrile (2))	
298.69	0.332	0.139	0.158	0.085	
348.18	0.386	0.169	0.133	0.074	
398.89	0.276	0.156	0.109	0.083	
1-C	hlorobutan	e(1) + Nitr	omethane (2	2)	
298.18	0.160	0.059	0.071	0.025	
348.16	0.036	0.047	0.019	0.023	
398.16	0.037	0.049	0.020	0.020	
	Acetone (1)) + 1-Chloro	butane (2)		
298.16	0.049	0.053	0.029	0.030	
348.16	0.068	0.060	0.033	0.029	
398.17	0.048	0.038	0.018	0.020	

^a % dev = $100[|P_{calcd} - P_{exptl}|/P_{exptl}]$. ^b rms for % dev = $[\Sigma^{n}(\% \text{ dev})^{2}/n]^{1/2}$

Table XIII. Compound Constants Used for the Peng-Robinson Equation of State^a

compd	Т _с , К	Р _с , МРа	ω	
1-chlorobutane	542.0	3.688	0.2180	
ethyl acetate	523.2	3.830	0.3630	
acetonitrile	548.0	4.833	0.3210	
nitromethane	588.0	6.313	0.3460	

^a The binary interaction constant was set to 0.0 for all three binaries.

Registry No. 1-Chlorobutane, 109-69-3; ethyl acetate, 141-78-6; acetonitrile, 75-05-8; acetone, 67-64-1; nitromethane, 75-52-5.

Literature Cited

- (1) Maher, P. J.; Smith, B. D. J. Chem. Eng. Data 1979, 24, 363.
- Maher, P. J.; Smith, B. D. J. Chem. Eng. Data 1980, 25, 61 (3) Muthu, O.; Maher, P. J.; Smith, B. D. J. Chem. Eng. Data 1980, 25,
- 163
- (4) Maher, P. J.; Smith, B. D. J. Chem. Eng. Data 1979, 24, 16.
 (5) Mixon, F. O.; Gumowski, B.; Carpenter, B. H. Ind. Eng. Chem. Fundam. 1965, 4, 455.
- (6) Peng, D.-Y.; Robinson, D. B. Ind. Eng. Chem. Fundam. 1976, 4, 455

- Tot.
 Barker, J. A. Aust. J. Chem. 1953, 6, 207.
 Gautreaux, M. F.; Coates, J. AIChE J. 1955, 1, 496.
 Maher, P. J.; Smith, B. D. Ind. Eng. Chem. Fundam. 1979, 18, 354.
 Abbott, M. M.; Van Ness, H. C. AIChE J. 1975, 21, 62.

Received for review July 16, 1982. Accepted September 24, 1982. We gratefully acknowledge the financial support received from the National Science Foundation Grant CPE-80000534 and from the Industrial Participants in the Thermodynamics Research Laboratory.

Total-Pressure Vapor-Liquid Equilibrium Data for Binary Systems of 1-Chlorobutane with Pentane, Benzene, and Toluene

Jagjit R. Khurma, Ol Muthu, Sarat Munjal, and Buford D. Smith*

Thermodynamics Research Laboratory, Washington University, St. Louis, Missouri 63130

Totai-pressure vapor-liquid equilibrium (VLE) data are reported at approximately 298, 348, and 398 K for each of three chlorobutane binaries with pentane, benzene, and toluene as the other component. The experimental PTx data were reduced to y_i , γ_i , and G^E values by both the Mixon-Gumowski-Carpenter and the Barker methods, but only the Mixon et al. results are reported in their entirety. Seven G^E correlations were tested in the Barker data reduction; the five-constant Redlich-Kister equation gave the best results. Various equations of state were used to estimate the vapor-phase fugacity coefficients; the Peng-Robinson results were used for the values reported.

Introduction

This paper reports total-pressure (PTx) vapor-liquid equilibrium data for three systems containing 1-chlorobutane plus a hydrocarbon (pentane, benzene, and toluene). The apparatus and techniques for the experimental measurements have been described in detail in a previous paper (1), along with the deTable I. Chemicals Used

component	vendor	stated purity %
1-chlorobutane	Burdick and Jackson	99.9+
pentane	Burdick and Jackson	99.9
benzene	Burdick and Jackson	99.9
toluene	Burdick and Jackson	99.9

fining equation for the activity coefficient and the standard states used.

Chemicals Used

The sources and purities of the chemicals used are listed in Table I. Activated molecular sieves (either 3A or 4A) were put into the chemical containers as they were received. Just prior to being loaded into the VLE cells, the chemicals were poured into distillation flasks and then distilled through a Vigreux column (25-mm o.d. and 470 mm long). The first and last portions of the distillate were discarded. The retained samples were back-flushed with dry nitrogen and put into amber glass bottles for transfer to the loading operation. The stated purities Table II. Experimental P vs. x_1 Values for the Pentane (1) + 1-Chlorobutane (2) System

	298.15 K			348.25 K			397.30 K	·
	PRESSURE, KPA			PRESSU	RE, KPA		PRESSU	RE, KPA
X1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH
.0000 .0303 .0700 .1195 .1712 .2671 .3800 .5839 .6820 .7749 .8426 .9215 .9215 .9215 .9215	13.615 16.226 19.470 26.938 33.17 39.64 45.30 49.75 54.23 61.68 64.68 66.46 68.28	13.615 16.225 19.258 26.950 39.26.950 39.26 39.275 58.275 58.275 58.275 58.275 58.28 64.669 68.27	.0000 .0301 .0696 .1189 .1704 .2661 .3789 .4890 .5827 .6810 .7740 .8420 .9211 .9215 .0000	91.27 101.41 113.94 143.71 199.89 221.55 260.92 279.5 260.92 279.5 308.21 316.17	91.27 101.39 128.91 143.69 169.83 241.40 261.03 279.4 279.4 308.2 316.1 323.7	.0000 .0299 .0692 .1182 .1694 .2649 .3774 .4876 .5810 .6795 .7728 .8411 .9207 .9613 .0000	346.5 372.0 403.4 478.6 545.6 688.6 688.6 854.6 854.6 854.4 938.5 93757 938.5 93757575757575775757757757777777777777	346.5 371.92 4403.5 478.4 545.6 687.6 687.6 800.5 854.6 854.6 8938.6 938.9 988.9 988.7

Table III. Experimental P vs. x_1 Values for the 1-Chlorobutane (1) + Benzene (2) System

298.15 K			348.16 K			398.20 К			
		PRESSUR	E, KPA		PRESSU	RE, KPA		PRESSU	RE, KPA
	X1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH
	.0000 .0326 .0326 .2050 .2999 .3921 .4800 .5896 .6891 .7776 .8341 .9723 1.0000	12 • 762 12 • 837 12 • 901 13 • 1025 13 • 166 13 • 230 13 • 389 13 • 3456 13 • 5551 13 • 617 13 • 634	12.765 122.831 123.0926 13.0966 13.231 13.317 13.4503 13.4503 13.6516 13.635	.0000 .0326 .2050 .2999 .3991 .4799 .5896 .6891 .7776 .8341 .9723 1.0000	86.61 87.09 87.04 88.04 88.46 89.17 89.62 90.38 90.38 90.58 90.58 90.58 90.12 91.21	86.65 87.01 87.04 88.06 88.45 89.18 89.18 89.62 90.37 90.60 90.37 90.60 90.82 91.12 91.22	.0000 .0326 .0800 .2050 .2998 .3920 .4799 .5895 .6891 .7775 .8341 .8341 .9723 1.0000	338.8 340.0 3413.6 345.5 345.5 345.5 3449.8 3551.5 3551.5 3554.5 3554.5 3554.5 3554.5 3554.5	338.9 339.9 341.6 345.1 345.5 345.5 347.8 3551.8 3551.8 3551.8 3551.8 3551.8 3551.8 3551.6 3554.6

Figure 1. Deviation from Raoult's law for the pentane (1) + 1-chlorobutane (2) system.

Figure 2. Deviation from Raoult's law for the 1-chlorobutane (1) + benzene (2) system.

Table IV. Experimental P vs. x_1 Values for the 1-Chlorobutane (1) + Toluene (2) System

	298.16 K			348.18	(398.22 K	
	PRESSU	RE, KPA		PRESSU	JRE, KPA		PRESSUR	, KPA
X 1	EXPTL	SMOOTH	X1	EXPTL	SHOOTH	×1	EXPTL	SMOOTH
.0000 .0447 .14239 .2069 .39384 .5369 .69567 .83766 .91559 1.0000	3 • 34 4 • 348 4 • 7587 5 • 9234 7 • 7587 5 • 9234 7 • 7039 10 • 6770 12 • 6773 12 • 6370 12 • 6370 12 • 6370 13 • 6554	3.835 4.340 4.288 5.912 7.708 8.708 10.6774 12.330 13.654	.0000 .04470 .1422 .2089 .39361 .5957 .6957 .6957 .6956 .83751 .91559 1.0000	32.74 35.63 388.29 450.356 55.356 55.350 66.99 73.462 81.83 888.886 91.31	3254 3554 3514 3514 3514 3514 3514 3517 3617 3617 3617 3618 3617 3618 3617 3618 3617 3618 3617 3618 3618 3618 3618 3618 3618 3618 3618	00000 0446 0869 14205 3026 3932 45863 6947 7863 8373 9149 9149 10000	150.69 160.55 169.09 180.11 193.499 230.66 251.71 291.9 310.7 321.2 337.4 354.8	1500 1669 1669 1890 1912 2301 2355 235
Table V. Cal	lculated Data fo	r the Pentane (1)	+ 1-Chlorobut	ane (2) System	n at 298.15, 3	48.25, and 397.30	K	
LIQUID	MOLAR VULU	JMES, CC/MOL	: VL(1) =	116.181	VL(2) =	105.125		
X1 • 0000 • 1000 • 2000 • 3000	TUTAL PRES EXPTL. 13.615 21.800 28.894 35.133	SSURE, KPA CALC, 13.615 21.801 28.894 35.133	HIXTURE F COEFFIG •9945 •9911 •9882 •9857	UGACITY IENTS 9928 9884 9847 9815	Y1 • 0000 • 4331 • 6137 • 7155	ACTIVITY COE 1.5219 1.4131 1.3227 1.2463	FFICIENTS 1.0000 1.0039 1.0157 1.0360	EXCESS GIBBS FUNCTION, J/MOLE 94.36 169.52 225.19
• 5000 • 6000 • 7000 • 8000 • 9000 1 • 0000	40.7185 50.487 54.958 59.322 63.700 68.270	40.714 50.486 54.957 59.321 63.700 68.270	• 7834 • 9813 • 9794 • 9776 • 9778 • 9740 • 9721	9759 9735 9735 9712 9689 9667 9663	. 7827 . 8327 . 8718 . 9058 . 9371 . 9677 1.0000	1 • 1323 1 • 0334 1 • 0481 1 • 0481 1 • 0220 1 • 0054 1 • 0000	1.0001 1.1038 1.2377 1.3354 1.4662 1.6108	260.97 276.10 269.56 240.21 186.63 106.95 0.00
LIQUID	HOLAR VULU	INES, CC/MOL	: VL(1) =	127.140	VL(2) =	112.255		
X1 .0000 .1000 .3000 .5000 .6000 .6000 .8000 .9000 1.0000	TOTAL PRES EXPTL • 91.274 123.295 177.844 201.700 223.857 244.746 264.849 304.027 323.682	SUKE, KPA CALC. 91.274 123.293 177.837 201.693 223.851 244.742 264.448 304.027 323.682	NIXTURE F CDEFFIC 9761 •9595 •9595 •9596 •9526 •9463 •9403 •9348 •9294 •9294 •9292 •9190 •9138	UGACITY IENTS 9676 9563 9374 92926 92926 9245 9011 8945 8879	Y1 .0000 .3226 .6170 .7011 .7666 .8210 .8688 .9132 .9563 1.0000	ACTIVITY COE 1 • 4076 1 • 3123 1 • 2426 1 • 1855 1 • 1370 1 • 0959 1 • 0620 1 • 0354 1 • 0163 1 • 0000	FFICIENTS 2 1.0000 1.0036 1.0293 1.0293 1.0258 1.0851 1.1275 1.1819 1.2499 1.3358 1.4661	EXCESS GIBETION, J/HOLLE 88.009 156.009 2068.009 2068.009 2068.009 2068.009 2068.009 2068.009 2068.009 2068.009 2068.009 2156.63 95.63 0.00
LIQUID	MOLAR VULU	JHES; CC/HOL	: VL(1) =	143.046	VL(2) =	121.088		
X1 .0300 .2000 .3000 .4000 .5000 .5000 .8000 .8000 1.0000	TOTAL PRES EXPTL.66 426.764 500.4531 633.801 695.043 754.298 812.462 869.649 9264.697	SSURE, KPA CALC. 3466.466 426.768 500.462 5633.816 633.816 695.055 754.305 812.464 869.646 926.697	MIXTURE F CDEFFIC 9384 9233 9095 8852 8852 8741 8528 8528 8425 8323 8219	UGACITY IENTS •9140 •8944 •8767 •8602 •8450 •8306 •8306 •8303 •7901 •707 •7640	Y1 • 0000 • 2481 • 4125 • 5324 • 6255 • 7027 • 7700 • 8312 • 8884 • 9441 1.9000	ACTIVITY COE 1 • 3579 1 • 2375 1 • 1847 1 • 1401 1 • 1008 1 • 0683 1 • 02432 1 • 0104 1 • 0020 1 • 0020 1 • 0000	FFICIENTS 1.0000 1.0041 1.0117 1.0248 1.0444 1.0703 1.1020 1.1398 1.1875 1.2448 1.2412	EXCESS GIBBS FUNCTION, J/MOLE 82.45 142.84 186.63 21.31 211.80 185.09 140.92 78.20

of the chemicals were verified chromatographically at this point. None of the compounds exhibited any degradation during the VLE measurements. The cell pressures were stable with respect to time, and all liquids were still perfectly clear when removed from the cells at the end of the last isotherm.

Experimental Data

Tables II-IV present the experimental *PTx* data. The "smooth" pressure values reported there are from the least-squares cubic splined fits used to interpolate the experimental

P vs. x_1 values to provide the evenly spaced values required by the finite-difference Mixon–Gumowski–Carpenter method (2) for reduction of *PTx* data.

Figures 1–3 show the experimental data in terms of the pressure deviation $P_{\rm D}$ from Raoult's law

$$P_{\rm D} = P - [P_2' + x_1(P_1' - P_2')]$$

where P is the experimental mixture pressure and the P_i' values are the pure-component vapor pressures. The deviation pressure plot emphasizes the scatter more than the P vs. x_1

L	IQUID	MOLAR	VOLUM	ES, CC/MOL	; VL(1) =	105.126	VL(2) =	89.409		
X01234567890	1 000 0000 0000 0000 0000 0000 0000	TOTAL E XPTI 123.012 133.012000000000000000000	PRESS 1630208 1750200000000000000000000000000000000000	UR E, LC 7 12. 7930 13. 0922 13. 1992 13. 175 13. 395 13. 395 13. 459 13. 459 13. 635	MIXTURE F CDEFFIC 9933 9932 9931 9930 9930 9930 9929 9929 9929 9928 9928 9928 9928	UGACITY IENTS 9944 9943 9943 9943 9942 9942 9942 9942	Y1 •0000 •2097 •3120 •4133 •5138 •7120 •8095 1•0000	ACTIVITY CC 1.0987 1.0299 1.0018 0.9993 0.9985 0.9988 0.9988 0.9994 1.0003 1.0006 1.0000	DEFFICIENTS 1.0000 1.0032 1.0076 1.0084 1.0084 1.0089 1.0089 1.0089 1.0084 1.0071 1.0071 1.0034 1.0034 1.0173	GIBSS FUNCTION J/MOLEO 14.38 15.994 11.54 6.46 4.28 2.12 2.12 0.00
L X01234567890	1 QUID 1 000 000 000 000 000 000 000 000 000	HOLAR TOTAL EXPTL 86.6 88.6 88.6 88.6 88.6 88.6 88.6 88.	VOLUM PRESS 49 345 35 35 35 35 35 35 35 35 35 35 35 35 35	URE: KPA CALC. 86.649 87.541 88.032 88.444 88.453 89.258 89.258 89.661 90.663 90.462 90.462 90.463	<pre>VL(1) * MIXTURE F C DEFFIC .9695 .9687 .9687 .9683 .9683 .9683 .9680 .9680 .9677 .9677<.9677</pre>	112.244 UGACITY IENTS 9745 9743 9742 9744 9740 9739 9739 9738 9738 9736 9736 9735	YL(2) = Y1 .0000 .1066 .2075 .3095 .4106 .5110 .6104 .7090 .8067 .9036 1.0000	95.342 ACTIVITY CO 1 1.0815 1.0244 1.0026 1.0015 1.0001 1.0007 1.0006 1.0004 1.0001 1.0000	DEFFICIENTS 1.0000 1.0026 1.0064 1.0064 1.0067 1.0067 1.0069 1.0071 1.0071 1.0094 1.0123	EXCESS GIBBTIO FUNMOL005 13.400 13.401 12.697 9.328 5.407 0.00
	1 QUID 0000 0000 0000 0000 0000 0000 0000 0	MDLAR TOTAL 33413 3453 3453 3453 3453 35453 35453 35453 3553	PRESS 875 618 618 4299 663 112 669 110 369 609	ES, CC/MUL GURE, KPA CALC. 338.875 348.875 343.491 345.125 346.112 348.112 349.495 352.112 352.112 353.370 354.609	<pre>HIXTURE (CDEFFI) CDEFFI) 9173 9165 9153 9158 9158 9148 9140 9136 9144 9140 9136 9136 9132 9129</pre>	121.277 EUGAC ITY CIENTS 9306 9300 9297 9294 9299 9288 9288 9288 9288 9288 9288	Y1 .0000 .1054 .2073 .3088 .4094 .5092 .6084 .7071 .8052 .9028 1.0000	ACTIVITY C i 1.0491 1.0201 1.0078 1.0052 1.0033 1.0020 1.0011 1.0001 1.0001 1.0002 1.0000 1.0000	DEFFICIENTS 2 1.0000 1.0014 1.0033 1.0042 1.0062 1.0062 1.0073 1.0084 1.0094 1.0103 1.0111	EXCESS GIBES FUNCTION J/MOLO04 13.92 14.62 13.62 14.62 13.62 14.62 13.62 14.62 13.62 13.62 13.62 0.00
VIATION PRESSURE, KPA	0.40 0.80 1.20 1.60	1-CHL	OROBU1	FRNE (1) + TO A 298.16 K 9 398.28 K C 398 22 K	LUENE (2)	×	HCTIVITY COEFFICIENTS	PENTANE (1)	+ 1-CHLOROBUT A 298.15 K B 348.25 K C 397.30 K	RNE (2)
0E	8 /2	+	-	± + . A	-		Ĩ,			

1.20

et al. method.

Table VI. Calculated Data for the 1-Chlorobutane (1) + Benzene (2) System at 298.15, 348.16, and 398.20 K

Figure 3. Deviation from Raoult's law for the 1-chlorobutane (1) + toluene (2) system.

 X_1

0.60

0.80

1.00

0.40

0.

-0.40

-0.80

0.00

0.20

Figure 4. Activity coefficients for the pentane (1) + 1-chlorobutane (2) system. Curves are from Barker method and points are from Mixon

LIQUID	MOLAR VOLUME:	S. CC/MOL:	VL(1) = 1	05.126	VL(2) =	106.859		
X1 0000 1000 3000 4000 5000 7000 9000 1.0000	TOTAL PRESSU EXPTL 3.835 4.890 5.832 6.7933 7.769 8.753 9.753 10.721 11.686 13.654	RCAL KFA 4.62902 5.83902 5.87933 7.7693 9.7721 10.7684 116854 13.6554	IXTURE FUG CUEFFICIE 9980 9974 9969 9959 9959 9958 9958 9958 9958 9958	ACITY NI2570 999533 9995411 999923 999923 999923 999923 999923 999923	Y1 .000 .2897 .49987 .5993 .778 .8912 .9693 .9693 .9693 .9693 1.0000	ACTIVITY COEFF 1 1701 1.0429 1.0016 0.9968 0.9981 0.9999 1.0009 1.0013 1.0012 1.0002 1.0000	ICIENTS 1.0000 1.0056 1.0119 1.0125 1.0125 1.0099 1.0099 1.0099 1.0097 1.00107 1.0533	EXCESS GIBBS FUNCTILE 20.777 20.58 16.685 13.509 9.025 7.123 0.00
LIQUID	MOLAR VOLUME	S, CC/HOL:	VL(1) = 1	12.244	VL(2) =	113.129		
x1 • 0000 • 1000 • 2000 • 4000 • 4000 • 6000 • 6000 • 7000 • 8000 • 9000 1 • 0000	TOTAL PRESSU EXPTL - 32.741 38.370 44.5391 56.227 62.040 67.650 73.697 79.615 85.568 91.319	M R CAL- 11 328- 4495 564- 0329 564- 0320 564- 0356 627- 869 627- 869 627- 869 63- 661 851- 31 91- 31	IXTURE FU CJEFFICI 9884 9862 9842 9842 9800 9779 9779 9779 9779 9738 9717 9675	ACITY 9265 98407 97706 977462 96751 9627	Y1 0000 2371 40353 6441 73017 86225 9151 1.0000	ACTIVITY COEF 1 1086 1.0310 1.0081 1.0062 1.0056 1.0022 1.0015 1.0022 1.0020 1.0022 1.0020 1.0022 1.0000	FICIENTS 2000 1.0034 1.0069 1.0078 1.0078 1.0078 1.0125 1.0109 1.0100 1.0950	EXCESS GIBBS FUNCTION, J/MOLE 0.79 20.59 20.59 19.97 18.90 16.77 13.79 10.77 8.00
LIQUII	C MOLAR VOLUN	IES, CC/MOL:	: VL(1) =	121.279	VL(2) =	120.590		
X1 • 0000 • 2000 • 3000 • 5000 • 5000 • 6000 • 8000 • 9000 • 9000	TOTAL PRESS ESPT.17 150.7795 191723 2110471 232.02666 272.02663 252.02663 213.0267 315.0267 315.007 315.00	GURE KPA 150.7128 171.7128 211.8454 252.512 272.5123 3134.866 3344.866	MIXTURE FC CDEFFIC 9629 9526 9527 9477 9377 93277 9226 9175	UGACIY IEN 2568 995458 9954514 9954514 992226 992225 9910492 9910492	Y1 .0007 .3589 .4882 .59875 .6651 .89508 .95000	ACTIVITY COE 1 0953 1 0368 1 0182 1 0142 1 0142 1 00142 1 00142 1 0054 1 0025 1 0025 1 0000	FFICIENTS 1.0000 1.00026 1.00054 1.00067 1.00067 1.0109 1.0143 1.0179 1.01208 1.0208 1.0263 1.0263	EXCESS S GIBBS DN, J/MOLOO 1930 29.31 31.42 29.50 25.68 13.480 13.480

Table VII. Calculated Data for the 1-Chlorobutane (1) + Toluene (2) System at 298.16, 348.18, and 398.22 K

 Table VIII.
 Comparison of the Barker and Mixon et al. Pressure

 Fits.
 Peng-Robinson Equation of State

	max % d	lev in P ^a	rms for	% dev ^b
temp, K	Barker	Mixon	Barker	Mixon
	Pentane (1)	+ 1-Chloro	butane (2)	
298.15	0.064	0.050	0.027	0.025
348.25	0.078	0.084	0.037	0.042
397.30	0.099	0.061	0.043	0.030
	1-Chlorobut	ane $(1) + B$	enzene (2)	
298.15	0.045	0.049	0.017	0.018
348.16	0.087	0.090	0.030	0.031
398.20	0.038	0.042	0.016	0.018
	1-Chlorobut	tane (1) + T	oluene (2)	
298.16	0.214	0.175	0.085	0.080
348.18	0.094	0.133	0.049	0.050
398.22	0.066	0.057	0.030	0.027

^a % dev = 100[$|P_{calcd} - P_{exptl}|/P_{exptl}$]. ^b rms for % dev = $[\Sigma^{n}(\% \text{ dev})^{2}/n]^{1/2}$.

plot but has the disadvantage of not indicating whether an azeotrope exists.

The symbols in Figures 1–3 denote the experimental data points. The curves approximate—sometimes not very closely—the cubic splined fits of those data points. Interpolated values (at 0.025 increments in x_1) from the splined fits are fed to the plotting software which then makes its own fit of the input values. Those fits are often not very good if the curve is irregularly shaped. Nevertheless, the curves do help illustrate

Table IX. Effect of Equation of State Choice on γ_i^{∞} Values Obtained with Mixon et al. Method for 1-Chlorobutane (1) + Toluene (2) at 398.22 K

	γ _i	¢	
eq of state used	1	2	
ideal gas	1.0668	1.0189	
virial through B_{ii} , Tsonopoulos	1.0966	1.0801	
Redlich-Kwong, Lu modification	1.0963	1.0809	
Peng-Robinson	1.0953	1.0772	

the scatter and the general behavior of the experimental points. For an accurate determination of how closely the splined fits represent the experimental points, Tables II-IV must be used.

The pentane and benzene systems showed positive deviations from Raoult's law at all temperatures at all compositions, and the deviations increased with temperature for both systems. Neither system formed an azeotrope at any of the three temperatures. The benzene system was close-boiling with low deviations from Raoult's law.

The toluene system was a mixed deviation system. As shown in Figure 3, the system had very low deviation values at room temperature but even at that temperature the P_D curve sags in the middle. At 348.18 K, the positive deviations have increased at both ends but the sag in the middle persists. At 398.22 K, the trend toward higher positive deviations continues at low x_1 values but the tendency toward negative deviations in the middle has become much stronger and appears to be extending toward the high x_1 values. These trends are clearly

Table X. Effect of Calculation Method on γ_i^{∞} Values for 1-Chlorobutane (1) + Toluene (2) at 398.22 K^a

	γ	ï
calculation method	1	2
Mixon-Gumowski-Carpenter (0.057/0.027) ^b	1.0966	1.0801
Barker:		
"absolute" Van Laar (0.34/0.26)	1.0472	1.0395
Wilson $(0.34/0.12)$	1.0472	1.0395
NRTL (0.10/0.04)	1.1359	1.0538
modified Margules (0.16/0.05)	1.1009	1.0782
UNIQUAC (0.26/0.10)	1.0593	1.0412
Redlich-Kister, three constants (0.19/0.07)	1.0708	1.0560
Redlich-Kister, five constants $(0.07/0.03)$	1.1074	1.0706
Gautreaux-Coates:		
splined fits	1.0977	1.0877
$P_{\mathbf{D}}/x_1x_2$ plots		

^a Virial equation through B_{ij} , Tsonopoulos correlation. ^b First number in parentheses is the maximum percent deviation in *P*. The second number is the root mean square of the percent deviation in *P*. See bottom of Table VIII.

visible despite the fact that the toluene system measurements showed more scatter than usual. No azeotrope was formed at any temperature.

Reduced Data

The y_i , γ_i , and G^{E} values selected for publication are in Tables V–VII. Those values were obtained with the Mixon et al. data reduction method, using the Peng–Robinson equation of state (3) to estimate the vapor-phase fugacity coefficients. The "experimental" pressure values tabulated in Tables V–VII are actually interpolated values from the cubic splined fits of the experimental *P* vs. x_1 values. (The fidelity with which the splined fits represent the actual experimental *P* values is shown in Tables II–IV.) The "calculated" pressure values are from the Mixon et al. data reduction and show how well that method reproduces the original pressure data.

The calculated activity coefficient curves are shown in Figures 4–6 for both the Mixon et al. and the Barker (4) data reduction methods. The Barker results shown used the five-constant Redlich–Kister equation for G^E and also used the Peng–Robinson equation of state for the estimation of the vapor-phase fugacity coefficients. The points in Figures 4–6 are the evenly spaced Mixon et al. values while the curves are from the Barker method. (The $\times 10^{-1}$ notation on the ordinate of some of the plots means that the decimal must be moved one place to the left in the ordinate scale numbers.)

Figures 5 and 6 illustrate the difficulties involved in getting good activity coefficient curves for almost ideal systems such as the 1-chlorobutane + benzene system, and for mixed deviation systems such as 1-chlorobutane + toluene. Note in Figure 6 that the temperature dependence of the γ_i^{∞} values at $x_1 = 0.0$ is the reverse of that at $x_1 = 1.0$. As shown in Table VIII and in Figures 7 and 8, both the Mixon et al. and Barker methods reproduce the experimental data very well. The two figures are resolution error band plots. The 0.0 line represents the experimental data point values. The boundaries formed by the large X's represent the maximum plus or minus experimental errors which could result due to the resolution limitations of the devices used to measure the pressure, temperature, and mole fraction values. The formula used to calculate the maximum possible resolution errors has been given in a previous paper (5). The resolution error does not include such errors as operator error, inadequate degassing, chemical reactions, etc. (Note that the $\times 10^{-1}$ notation means that the decimal must be moved one place to the left in the ordinate scale numbers.)

Figure 5. Activity coefficients for the 1-chlorobutane (1) + benzene (2) system. Curves are from Barker method and points are from Mixon et al. method. Move decimal point one place to left in ordinate scale values.

Figure 6. Activity coefficients for the 1-chlorobutane (1) + benzene (2) system. Curves are from Barker method and points are from Mixon et al. method. Move decimal point one place to left in ordinate scale values.

Figure 7. Comparison of Mixon et al. and Barker results on resolution error band plot for 1-chlorobutane (1) + benzene (2) system at 348.16 K. Peng-Robinson equation of state. Five-constant Redlich-Kister equation for Barker method.

Figures 7 and 8 are the worst of the three such plots for each of the two systems but, as can be seen, all the points fall within the resolution error band which indicates two things. First, there were no experimental errors greater than the possible resolution errors and, second, the Mixon et al. and Barker methods both did a good job of representing the experimental P values. Nevertheless, the activity coefficient curves in Figures 5 and 6 do not inspire confidence.

There is no certain way to know whether or not the activity coefficient curves are correct-that is the basic disadvantage of the total-pressure approach to VLE measurements. The activity coefficient is a "slope" property; i.e., it is related to the slope of the P vs. x_1 curve. When the slopes are unusual—as they certainly are in Figure 3, and to some extent in Figure 2 also-the activity coefficient curves must take on odd shapes. However, odd shapes may also result from any one of three areas of possible trouble in the data reduction process. The first area concerns the basic data reduction method used. The method must, of course, reproduce the original experimental P values very closely, but, in addition, it must represent the shape (slopes) of the P vs. x_1 curve. The best fit of the P values is not always synonymous with the best representation of the slopes. For example, it is easy to overfit the P vs. x_1 points with the cubic splined fits by using too many knot points to reduce the root-mean-squared deviation (rmsd). One has to watch the dP/dx and d^2P/dx^2 values associated with the splined fits. Even when the derivatives appear well-behaved, the activity coefficient curve may still exhibit an unlikely bend or two due to some slight irregularity in the slope of the fit of the P values.

The second trouble area is the equation of state used. However, as illustrated in Table IX for the 1-chlorobutane + toluene system, the calculated activity coefficient values were not a strong function of the equation of state for the systems covered in this paper.

Figure 8. Same as for Figure 7 but for the 1-chlorobutane (1) + toluene (2) system at 348.18 K.

The third trouble area concerns only the Barker method. Table X shows how the infinite-dilution activity coefficients obtained with the Barker method vary with the correlation equation used to represent $G^{\rm E}$. The ${\gamma_1}^{\infty}$ values vary from 1.0472 to 1.1359 while the γ_2° values range from 1.0395 to 1.0782. The 1.1359 - 1.0472 = 0.0887 variation is 92% of the departure from Raoult's law (deviation from 1.0) calculated by the Mixon et al. value. The Barker curves plotted in Figures 4-6 are based on the five-constant Redlich-Kister equation. The 398.22 K curve in Figure 6 has the lowest intercept of the three temperature curves at $x_1 = 0.0$. Note where the intercepts (γ_1^{∞} values) for the other G^{E} correlations would fall in Figure 6. The five-constant Redlich-Kister equation usually fits the P values best and hence usually agrees best with the Mixon et al. results.

Table X also shows the ${\gamma_i}^\infty$ values obtained with the Gautreaux-Coates equation (6, 7) using $(dP/dx_1)^{\infty}$ values from the splined fits. Often those values agree well with the Mixon et al. method; both use the same splined fits. The P_D/x_1x_2 plots (7) did not provide reliable $(dP/dx_1)^{\infty}$ values for this system.

Registry No. 1-Chlorobutane, 109-69-3; benzene, 71-43-2; toluene, 108-88-3; pentane, 109-66-0.

Literature Cited

- Maher, P. J.; Smith, B. D. J. Chem. Eng. Data 1979, 24, 16.
- (2) Mixon, F. O.; Gumowski, B.; Carpenter, B. H. Ind. Eng. Chem. Fundam. 1965, 4, 455.
- (3)Peng, D.-Y.; Robinson, D. B. Ind. Eng. Chem. Fundam. 1976, 4, 455
- Barker, J. A. *Aust. J. Chem.* **1953**, *6*, 207. Muthu, O.; Maher, P. J. *J. Chem. Eng. Data* **1980**, *25*, 163. Gautreaux, M. F.; Coates, J. *AIChE J.* **1955**, *1*, 496. (5)
- (6) Maher, P. J.; Smith, B. D. Ind. Eng. Chem. Fundam. 1979, 18, 354. (7)

Received for review July 16, 1982. Accepted September 24, 1982. We gratefully acknowledge the financial support received from the National Sciince Foundation Grant CPE-80000534 and from the Industrial Participants in the Thermodynamics Research Laboratory